第二课 圆锥曲线与方程
[核心速填]
1.椭圆、双曲线、抛物线的定义、标准方程、几何性质
椭圆
双曲线
抛物线
定义
平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹
平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹
平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹
标准方程
+=1或+=1(a>b>0)
-=1或-=1(a>0,b>0)
y2=2px或y2=-2px或x2=2py或x2=-2py(p>0)
关系式
a2-b2=c2
a2+b2=c2
图形
封闭图形
无限延展,但有渐近线y=±x或y=±x
无限延展,没有渐近线
变量范围
|x|≤a,|y|≤b或|y|≤a,|x|≤b
|x|≥a或|y|≥a
x≥0或x≤0或y≥0或y≤0
对称性
对称中心为原点
无对称中心
两条对称轴
一条对称轴
顶点
四个
两个
一个
离心率
e=,且0
(1)由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方程中的1换成0,即可得到两条渐近线的方程.如双曲线-=1(a>0,b>0)