圆的面积
学习目标:
1.理解圆的面积计算公式的推导过程,掌握求圆的面积的方法并能正确计算。
2.通过动手操作,培养自己运用转化的方法解决问题的能力。
学习重点:掌握求圆的面积的方法并能正确计算。
学习难点:理解把圆转化为长方形推导出计算公式的过程。
知识储备
1.计算下面各题(组内比一比,看谁算得快)
72 = 92 = 102= 82 = 62 = 52 =
42= 32= 22= 112 = 122= 202=
2.小组合作回忆平行四边形的面积公式推导过程(组内交流后完成下面的填空)
我们在推导平面图形的面积时多数是用( )的方法,即把所学的图形进行分割、拼摆转化成学过的图形,用旧知识解决问题,今天我们仍用这种方法探究圆的面积计算公式。
自主与合作学习
1.什么是圆的面积?圆的面积大小由什么决定。
2.小组合作动手操作,推导圆的面积计算公式。
拿出课前把圆分成若干(偶数份)等份剪开后的图形,把这些近似于等腰小三角形的小纸片按P67的方法拼一拼,再思考:
(1)拼成的图形是( ),等分的份数(偶数份)越多,拼出的图形更接近( )形。
(2)拼成的近似的长方形的长和宽与圆的周长、半径有什么联系?面积呢?(结合拼成的图形组内交流并展示)
3.结合拼摆、推导的过程整理圆的面积计算公式。
(1)从拼摆的图中可以看出圆的半径是r,长方形的长是( ),宽是( )。
(2)因为长方形的面积=( )× ( )
所以圆的面积=( )× ( )=( )
(3)如果用S表示圆的面积,那么圆的面积计算公式就是( )。