1.2 充分条件和必要条件(2)
[教学目标]:
1.进一步理解并掌握充分条件、必要条件、充要条件的概念;
2.掌握判断命题的条件的充要性的方法;
[教学重点、难点]:
一、复习回顾
一般地,如果已知,那么我们就说p是q成立的充分条件,q是p的必要条件
⑴""是""的 充分不必要 条件.
⑵若a、b都是实数,从①;②;③;④;⑤;⑥中选出使a、b都不为0的充分条件是 ①②⑤ .
二、例题分析
条件充要性的判定结果有四种,判定的方法很多,但针对各种具体情况,应采取不同的策略,灵活判断.下面我们来看几个充要性的判断及其证明的例题.
1.要注意转换命题判定,培养思维的灵活性
例1:已知p:;q:x、y不都是,p是q的什么条件?
分析:要考虑p是q的什么条件,就是判断"若p则q"及"若q则p"的真假性
从正面很难判断是,我们从它们的逆否命题来判断其真假性
"若p则q"的逆否命题是"若x、y都是,则"真的
"若q则p"的逆否命题是"若,则x、y都是"假的
故p是q的充分不必要条件
注:当一个命题很难判断其真假性时,我们可以从其逆否命题来着手.
练习:已知p:或;q:或,则是的什么条件?
显然是的的充分不必要条件
方法二:要考虑是的什么条件,就是判断"若则"及"若则"的真假性
"若则"等价于"若q则p"真的
"若则"等价于"若p则q"假的
故是的的充分不必要条件
2.要注意充要条件的传递性,培养思维的敏捷性
例2:若M是N的充分不必要条件,N是P的充要条件,Q是P的必要不充分条件,则M是Q的什么条件?
分析:命题的充分必要性具有传递性 显然M是Q的充分不必要条件
3.充要性的求解是一种等价的转化
例3:求关于x的一元二次不等式于一切实数x都成立的充要条件
分析:求一个问题的充要条件,就是把这个问题进行等价转化