课题:双曲线及其标准方程
课时:02
课型:新授课
教学目标:
1, 知识与技能目标
理解双曲线的概念,掌握双曲线的定义、会用双曲线的定义解决实际问题;理解双曲线标准方程的推导过程及化简无理方程的常用的方法;了解求双曲线的动点的伴随点的轨迹方程的一般方法.
2.过程与方法目标:培养学生观察、实验、探究、验证与交流等数学活动能力
3.情感、态度与价值观目标
通过作图展示与操作,必须让学生认同:圆、双曲线和抛物线都是圆锥曲线。
4.能力目标
(1).培养想象与归纳能力,培养学生的辩证思维能力,培养学生实际动手能力,综合利用已有的知识能力.
(2).数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.
(3).创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.
新课讲授过程
(1)双曲线的定义
〖板书〗把平面内与两个定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线(hyperbola).其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.即当动点设为时,双曲线即为点集.
强调:a的条件是什么;如果去掉绝对值还是双曲线了吗?
(2)双曲线标准方程的推导过程
提问:已知双曲线的图形,是怎么样建立直角坐标系的?类比求双曲线标准方程的方法由学生来建立直角坐标系.
无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程.