2019-2020学年北师大版选修1-1 1.3.1 全称量词与存在量词教案
2019-2020学年北师大版选修1-1  1.3.1  全称量词与存在量词教案第1页

1.3.1 全称量词与存在量词

学习目标: 1、通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.

2、了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断其命题的真假性.

重点:理解全称量词与存在量词的意义;

难点: 全称命题和特称命题真假的判定.

自主学习

问题1、下列语句是命题吗?假如是命题你能判断它的真假吗?

(1)2x+1是整数;(2) x>3;(3) 如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书;(6)所有有中国国籍的人都是黄种人;(7)对所有的x∈R, x>3;(8)对任意一个x∈Z,2x+1是整数。

问题2、命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 "所有的""任意一个" 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做______量词,含有全称量词的命题,叫做_______命题。命题(5)-(8)都是全称命题。

问题3、在判断问题1中的命题(5)-(8)的真假的时候,可以得出这样一些命题:

(5),存在个别高一学生数学课本不是采用人民教育出版社A版的教科书;

(6),存在一个(个别、部分)有中国国籍的人不是黄种人.

(7), 存在一个(个别、某些)实数x(如x=2),使x≤3.(至少有一个x∈R, x≤3)

(8),不存在某个x∈Z使2x+1不是整数.

  这些命题用到了"存在一个""至少有一个"这样的词语,这些词语都是表示整体的一部分的词叫做______量词。并用符号""表示。含有存在量词的命题叫做______命题(或存在命题)命题(5),-(8),都是特称命题(存在命题).

  特称命题:"存在M中一个x,使p(x)成立"可以用符号简记为:。读做"存在一个x属于M,使p(x)成立".

  全称量词相当于日常语言中"凡","所有","一切","任意一个"等;存在量词相当于日常语言中"存在一个","有一个","有些","至少有一个"," 至多有一个"等.

合作探究

(1)下列全称命题中,真命题是:

  A. 所有的素数是奇数; B. ;

C. D.