2018-2019学年人教A版选修2-1 2.3.2双曲线的简单几何性质第一课时 学案
2018-2019学年人教A版选修2-1 2.3.2双曲线的简单几何性质第一课时 学案第1页

2.3.2 双曲线的简单几何性质

  学习目标:1.掌握双曲线的简单几何性质.(重点)2.理解双曲线的渐近线及离心率的意义.(难点)

  [自 主 预 习·探 新 知]

  1.双曲线的几何性质

标准方程 a2(x2)-b2(y2)=1(a>0,b>0) a2(y2)-b2(x2)=1(a>0,b>0) 图形 性质 范围 x≥a或x≤-a y≤-a或y≥a 对称性 对称轴:坐标轴,对称中心:原点 顶点 (-a,0),(a,0) (0,-a),(0,a) 轴长 实轴长=2a,虚轴长=2b 离心率 e=a(c)>1 渐近线 y=±a(b)x y=±b(a)x   思考:(1)渐近线相同的双曲线是同一条双曲线吗?

  (2)双曲线的离心率和渐近线的斜率有怎样的关系?

  [提示] (1)渐近线相同的双曲线有无数条,但它们实轴与虚轴的长的比值相同.

  (2)e2=a2(c2)=1+a2(b2),a(b)是渐近线的斜率或其倒数.

  2.双曲线的中心和等轴双曲线

  (1)双曲线的中心

  双曲线的对称中心叫做双曲线的中心.

  (2)等轴双曲线

实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e=.