1.1.3集合的运算
教学目标:
理解两个集合的并集的含义,会求两个集合的并集
教学重、难点:
会求两个集合的并集
教学过程:
(一)复习集合的概念、子集的概念、集合相等的概念;两集合的交集.
(二)讲述新课
一、
1、 观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?
2、考察集合A={1,2,3},B={2,3,4}与集合C={1,2,3,4}之间的关系.
二、
一般地,对于给定的两个集合A,B把它们所有的元素并在一起所组成的集合,叫做A,B的并集.记作A∪B(读作"A并B"),
即A∪B={x|x∈A,或x∈B}.
如:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.
又如:A={a,b,c,d,e},B={c,d,e,f}.则A∪B={a,b,c,d,e,f}
三、基本性质
A∪B= B∪A; A∪A=A; A∪Ф=A; A∩B=BAB
注:是否给出证明应根据学生的基础而定.
四、补充
1、 设集合A={1,2,3,4},B={3,4,5,6}讨论A∪B,A,B,A∩B中元素的个数有何关系.
2、 (容斥原理)
五、补充例子
1.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∪B.
解:A∪B={x|x是锐角三角形}∪{x|x是钝角三角形}={x|x是斜三角形}.
2.设A={x|-1 解:A∪B={x|-1 3.已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B={-},求A∪B.