八年级数学上册《第十五章:分式》教案教学设计免费下载4
八年级数学上册《第十五章:分式》教案教学设计免费下载4第1页

分 式

一、概念:

定义1:整式A除以整式B,可以表示成的形式。如果除式B中含有分母,那么称为分式。(对于任何一个分式,分母不为0。如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。分式:分母中含有字母。整式:分母中没有字母。而代数式则包含分式和整式。)

定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

定义3:分子和分母没有公因式的分式称为最简分式。(化简分式时,通常要使结果成为最简分式或者整式。)

定义4:化异分母分式为同分母分式的过程称为分式的通分。

定义5:分母中含有未知数的方程叫做分式方程

定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。

二、基本性质:

分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

三、运算法则:

1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:﹒=)

2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (用符号语言表示:÷=﹒=)

分式乘除法的运算步骤:

当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

  当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面.

  最后的计算结果必须是最简分式或整式.

3、同分母分式加减法则是:同分母的分式相加减。分母不变,把分子相加减。(表达式为:±=)

4、异分母的分式相加减法则是:先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。(表达式为:±=±=)

怎样确定最简公分母:我们在进行异分母的分式加减时,最先要考虑的是找到几个异分母的最简公分母,然后进行通分。怎样确定最简公分母呢?

(1)、算式中只有一项是分式,最简公分母就是这个分式的分母。如算式的最简公分母就