直线的倾斜角和斜率(1)
课 型:新授课
教学目标:
知识与技能
1.正确理解直线的倾斜角和斜率的概念.
2.理解直线的倾斜角的唯一性.
3.理解直线的斜率的存在性.
4.斜率公式的推导过程,掌握过两点的直线的斜率公式.
情感态度与价值观
1.通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.
2.通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
重点与难点: 直线的倾斜角、斜率的概念和公式.
教学方法:启发、引导、讨论.
教学过程:
1.直线的倾斜角的概念
我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, ...易见,答案是否定的.这些直线有什么联系呢?
(1)它们都经过点P. (2)它们的'倾斜程度'不同. 怎样描述这种'倾斜程度'的不同?
引入直线的倾斜角的概念:
当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.
问: 倾斜角α的取值范围是什么? 0°≤α<180°.
当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.
直线a∥b∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.
确定平面直角坐标系内的一条直线位置的几何要素: 一个点P和一个倾斜角α.
2.直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是