2019-2020学年苏教版必修二 空间两点间的距离公式 教案
2019-2020学年苏教版必修二   空间两点间的距离公式   教案第1页

 空间两点间的距离公式

  (一)教学目标

  1.知识与技能

  使学生掌握空间两点间的距离公式

  2.过程与方法

  

  3.情态与价值观

  通过空间两点间距离公式的推导,使学生经历从易到难,从特殊到一般的认识过程

  (二)教学重点、难点

  重点:空间两点间的距离公式;

  难点:一般情况下,空间两点间的距离公式的推导。

  (三)教学设计

教学环节 教学内容 师生互动 设计意图 复习引入 在平面上任意两点A (x1,y1),B (x2,y2)之间的距离的公式为|AB| =,那么对于空间中任意两点A (x1,y1,z1),B (x2,y2,z2)之间的距离的公式会是怎样呢?你猜猜? 师:只需引导学生大胆猜测,是否正确无关紧要。

生:踊跃回答   通过类比,充分发挥学生的联想能力。 概念形成 (2)空间中任间一点P (x,y,z)到原点之间的距离公式会是怎样呢?

师:为了验证一下同学们的猜想,我们来看比较特殊的情况,引导学生用勾股定理来完成

学生:在教师的指导下作答得出|OP| =. 从特殊的情况入手,化解难度 概念深化 (3)如果|OP| 是定长r,那么x2 + y2 + z2 = r2表示什么图形? 师:注意引导类比平面直角坐标系中,方程x2 + y2 = r2表示的图形中,方程x2 + y2 = r2表示图形,让学生有种回归感。

生:猜想说出理由   任何知识的猜想都要建立在学生原有知识经验的基础上,学生可以通过类比在平面直角系中,方程x2 + y2 = r2表示原点或圆,得到知识上的升华,提高学习的兴趣。