2.2.1用样本的频率分布估计总体分布(2课时)
一、三维目标:
1、知识与技能
(1) 通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
2、过程与方法
通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3、情感态度与价值观
通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
二、重点与难点
重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
难点:能通过样本的频率分布估计总体的分布。
三、教学设想
【创设情境】
在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕
甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50
乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33
请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?
如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容--用样本的频率分布估计总体分布(板出课题)。
【探究新知】〖探究〗:P55
〈一〉频率分布的概念:
频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率