2019-2020学年苏教版选修2-2 数系的扩充与复数的引入 教案
目标定位:
数的概念的发展与数系扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需要.复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.《标准》在选修1-2与选修2-2中设计了数系的扩充与复数的引入的内容,突出数系的扩充过程,实现了基础教育数学课程中数系从实数到复数的又一次扩充.《标准》强调复数的代数表示法及代数形式的加减运算的几何意义,淡化烦琐的计算和技巧性训练,从而体会数学体系的建构过程、数形结合思想以及人类理性思维在数学发展中的作用,有助于发展学生的创新意识.
引进虚数,把实数集扩充到复数集,这是中学课程里数的概念的最后一次扩充.虚数的引入,虽然最先是由于数学本身的需要,但也只有当复数表示平面上的点这一几何解释出现之后,在解决实际问题中才得到广泛的应用,复数才被人们承认并且巩固了下来.
复数与平面向量有着密切的联系.复数的向量形式是它的几何意义之一;借助向量,我们可以得到复数的加法法则,并赋予其几何意义;复数减法的几何意义与向量减法也是一致的.这种数形结合的思想丰富了我们研究问题和解决问题的范围和手段.同时,复数作为一种新的"数学语言"也为我们今后用代数方法解决几何问题提供了可能.
数系的扩充与复数的引入与2002年颁布的《全日制普通高级中学数学教学大纲》相比,删去了复数的三角形式以及复数三角形式的乘法、除法、乘方、开方等内容,突出了数系的扩充过程、复数的代数表示法、代数形式的四则运算以及加减运算的几何意义.
教材解读:
复数的内容是高中数学课程中的传统内容.对于复数,《标准》要求在问题