7.1 正切函数的定义
7.2 正切函数的图像与性质
内容要求 1.能借助单位圆中的正切线画出函数y=tan x的图像.2.掌握正切函数的图像、定义域、值域、单调性、奇偶性、周期性等性质(重点).3.注重数形结合思想的应用以及正切函数与正、余弦函数的综合应用(难点).
知识点1 正切函数的定义
(1)任意角的正切函数:
如果角α满足α∈R,α≠+kπ(k∈Z),那么,角α的终边与单位圆交于点P(a,b),唯一确定比值,我们把它叫作角α的正切函数,记作y=tan α,其中α∈R,α≠+kπ,k∈Z.
(2)正切函数与正弦、余弦函数的关系:
根据定义知tan α=(α∈R,α≠kπ+,k∈Z).
(3)正切值在各象限的符号:
根据定义知,当角在第一和第三象限时,其正切函数值为正;当角在第二和第四象限时,其正切函数值为负.
(4)正切线:
在单位圆中令A(1,0),过A作x轴的垂线,与角α的终边或终边的延长线相交于T,称线段AT为角α的正切线.
【预习评价】
1.若角α的终边上有一点P(2x-1,3),且tan α=,则x的值为( )
A.7 B.8
C.15 D.
解析 由正切函数的定义tan α==,解之得x=8.
答案 B