2019-2020学年北师大版选修2-2 数系的扩充和复数的概念 学案
题型一 复数的概念
例1 写出下列复数的实部和虚部,并判断它们是实数,虚数,还是纯虚数.
①2+3i;②-3+i;③+i;④π;⑤-i;⑥0.
解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为,是虚数;③的实部为,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-,是纯虚数;⑥的实部为0,虚部为0,是实数.
反思与感悟 复数a+bi(a,b∈R)中,实数a和b分别叫做复数的实部和虚部.特别注意,b为复数的虚部而不是虚部的系数,b连同它的符号叫做复数的虚部.
跟踪训练1 下列命题中,正确命题的个数是( )
①若x,y∈C,则x+yi=1+i的充要条件是x=y=1;
②若a,b∈R且a>b,则a+i>b+i;
③若x2+y2=0,则x=y=0.
A.0 B.1 C.2 D.3
答案 A
解析 ①由于x,y∈C,所以x+yi不一定是复数的代数形式,不符合复数相等的充要条件,所以①是假命题.②由于两个虚数不能比较大小,所以②是假命题.③当x=1,y=i时,x2+y2=0成立,所以③是假命题.故选A.
题型二 复数的分类
例2 设z= (m-1)+ilog2(5-m)(m∈R).
(1)若z是虚数,求m的取值范围;
(2)若z是纯虚数,求m的值.
解 (1)因为z是虚数,故其虚部log2(5-m)≠0,
m应满足的条件是解得1<m<5,且m≠4.
(2)因为z是纯虚数,故其实部(m-1)=0,虚部log2(5-m)≠0,