圆与圆的位置关系
学习目标 1.理解圆与圆的位置关系的种类;2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系;3.体会根据圆的对称性灵活处理问题的方法和它的优越性.
知识点 两圆位置关系的判定
思考1 圆与圆的位置关系有几种?如何利用几何方法判断圆与圆的位置关系?
答案 圆与圆的位置关系有五种,分别为:外离、外切、相交、内切、内含.
几何方法判断圆与圆的位置关系:
设两圆的圆心距为d,两圆的半径分别为r1,r2(r1≠r2),则
(1)当d>r1+r2时,圆C1与圆C2外离;
(2)当d=r1+r2 时,圆C1与圆C2外切;
(3)当|r1-r2|<d<r1+r2 时,圆C1与圆C2相交;
(4)当d=|r1-r2|时,圆C1与圆C2内切;
(5)当d<|r1-r2|时,圆C1与圆C2内含.
思考2 已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,如何通过代数的方法判断两圆的位置关系?
答案 联立两圆的方程,消去y后得到一个关于x的一元二次方程,当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切,当Δ<0时,两圆外离或内含.
类型一 两圆位置关系的判定
例1 a为何值时,两圆C1:x2+y2-2ax+4y+a2-5=0和C2:x2+y2+2x-2ay+a2-3=0
(1)外切;(2)相交;(3)外离.
解 将两圆方程写成标准方程,
C1:(x-a)2+(y+2)2=9,C2:(x+1)2+(y-a)2=4.
∴两圆的圆心和半径分别为C1(a,-2),r1=3,C2(-1,a),r2=2.
设两圆的圆心距为d,
则d2=(a+1)2+(-2-a)2=2a2+6a+5.