2019-2020学年人教B版必修二 直线与圆的位置关系 学案
2019-2020学年人教B版必修二   直线与圆的位置关系 学案第1页



2019-2020学年人教A版必修二 直线与圆的位置关系 学案

典例精析

题型一 切线的判定和性质的运用

【例1】如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.

(1)求证:DE是⊙O的切线;

(2)若=,求的值.

【解析】(1)证明:连接OD,可得∠ODA=∠OAD=∠DAC,

所以OD∥AE,又AE⊥DE,所以DE⊥OD,

又OD为半径,所以DE是⊙O的切线.

(2)过D作DH⊥AB于H,则有∠DOH=∠CAB,

=cos∠DOH=cos∠CAB==,

设OD=5x,则AB=10x,OH=2x,所以AH=7x.

由△AED≌△AHD可得AE=AH=7x,

又由△AEF∽△DOF可得AF∶DF=AE∶OD=,

所以=.

【变式训练1】已知在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于点F.

(1)求证:AF=CF;

(2)若ED=4,sin∠E=,求CE的长.

【解析】(1)方法一:设线段FD延长线上一点G,则∠GDB=∠ADF,且∠GDB+∠BDO=,所以∠ADF+∠BDO=,又因为在⊙O中OD=OB,∠BDO=∠OBD,所以∠ADF+∠OBD=.

在Rt△ABC中,∠A+∠CBA=,所以∠A=∠ADF,所以AF=FD.

又在Rt△ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,

又FD为⊙O的切线,所以FD=CF.

所以AF=CF.

方法二:在直角三角形ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,

又FD为⊙O的切线,所以FD=CF,且∠FDC=∠FCD.

又由BC为⊙O的直径可知,∠ADF+∠FDC=,∠A+∠FCD=,

所以∠ADF=∠A,所以FD=AF.

所以AF=CF.