复习与引入过程
1.抛物线的定义是什么?
请一同学回答.应为:"平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线."
2.抛物线的标准方程是什么?
再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0)和x2=-2py(p>0).
下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.《板书》抛物线的几何性质
(2)新课讲授过程
(i)抛物线的几何性质
通过和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?
学生和教师共同小结:
(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线.
(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心.
(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点.
(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为1.注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了
(ii)例题讲解与引申
.例题3 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.
解法一:由焦半径关系,设抛物线方程为y2=-2px(p>0),则准线方
因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离
得p=4.
因此,所求抛物线方程为y2=-8x.
又点M(-3,m)在此抛物线上,故m2=-8(-3).
解法二:由题设列两个方程,可求得p和m.由学生演板.由题意
在抛物线上且|MF|=5,故