回归分析的有关概念
【例1】 (1)有下列说法:
①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程\s\up6(^(^)=\s\up6(^(^)x+\s\up6(^(^),可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.
其中正确命题的个数是( )
A.1 B.2
C.3 D.4
(2)关于变量y与x之间的回归直线方程,叙述正确的是( )
A.表示y与x之间的一种确定性关系
B.表示y与x之间的相关关系
C.表示y与x之间的最真实的关系
D.表示y与x之间真实关系的一种效果最好的拟合
(3)如果某地的财政收入x与支出y满足线性回归方程\s\up6(^(^)=\s\up6(^(^)x+\s\up6(^(^)+ε(单位:亿元),其中\s\up6(^(^)=0.8,\s\up6(^(^)=2,|ε|≤0.5,如果今年该地区财政收入10亿元,则今年支出预计不会超过________亿.
【解】 (1)①反映的正是最小二乘法思想,故正确.②反映的是画散点图的作用,也正确.③解释的是回归方程\s\up6(^(^)=\s\up6(^(^)x+\s\up6(^(^)的作用,故也正确.④是不正确的,在求回归方程之前必须进行相关性检验,以发现两变量的关系.
(2)回归直线方程能最大可能地反映y与x之间的真实关系,故选项D正确.
(3)由题意可得:\s\up6(^(^)=0.8x+2+ε,当x=10时,\s\up6(^(^)=0.8×10+2+ε=10+ε,又|ε|≤0.5,∴7.5≤\s\up6(^(^)≤8.3.
故今年支出预计不会超过8.5亿.
【答案】 (1)C (2)D (3)8.5
1.在分析两个变量的相关关系时,可根据样本数据散点图确定两个变量之间是否存在相关关系,然后利用最小二乘法求出回归直线方程.