§2.2 椭 圆
2.2.1 椭圆及其标准方程
学习目标 1.理解椭圆的定义.2.掌握椭圆的标准方程及标准方程的推导过程.
知识点一 椭圆的定义
思考 给你两个图钉,一根无弹性的细绳,一张纸板,一支铅笔,如何画出一个椭圆?
答案 在纸板上固定两个图钉,绳子的两端固定在图钉上,绳长大于两图钉间的距离,笔尖贴近绳子,将绳子拉紧,移动笔尖即可画出椭圆.
梳理 (1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
(2)椭圆的定义用集合语言叙述为:
P={M||MF1|+|MF2|=2a,2a>|F1F2|}.
(3)2a与|F1F2|的大小关系所确定的点的轨迹如下表:
条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a=|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在
知识点二 椭圆的标准方程
思考 在椭圆的标准方程中a>b>c一定成立吗?
答案 不一定,只需a>b,a>c即可,b,c的大小关系不确定.
梳理 (1)椭圆标准方程的两种形式
焦点位置 标准方程 焦点 焦距 焦点在x轴上 +=1(a>b>0) F1(-c,0),
F2(c,0) 2c