2019-2020学年人教A版选修2-2 第二章 推理与证明 章末复习 学案
2019-2020学年人教A版选修2-2   第二章 推理与证明 章末复习   学案第1页

章末复习

1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.

2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.

3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.

4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.

5.归纳、猜想、证明

探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.