2018-2019学年北师大版必修五 数列的概念 学案
2018-2019学年北师大版必修五   数列的概念    学案第1页

1.1 数列的概念

学习目标 1.理解数列及其有关概念.2.理解数列的通项公式,并会用通项公式写出数列的任意一项.3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.

知识点一 数列及其有关概念

思考1 数列1,2,3与数列3,2,1是同一个数列吗?

思考2 数列的记法和集合有些相似,那么数列与集合的区别在哪儿?

梳理 (1)按____________排列的____________叫作数列,数列中的每一个数叫作这个数列的____.

(2) 数列的一般形式可以写成________________________________简记为________,其中数列的第1项a1,也称________;an是数列的第n项,也叫数列的________.

知识点二 通项公式

思考1 数列1,2,3,4,...的第100项是多少?你是如何猜的?

梳理 如果数列{an}的第n项an与n之间的函数关系可以用一个式子表示成an=f(n),那么这个式子叫作这个数列的通项公式.数列的通项公式就是相应函数的解析式.不是所有的数列都能写出通项公式.

思考2 数列的通项公式an=f(n)与函数解析式y=f(x)有什么异同? 

类型一 由数列的前几项写出数列的一个通项公式

例1 写出下面数列的一个通项公式,使它的前4项分别是下列各数:

(1)1,-,,-;(2),2,,8,;

(3)9,99,999,9 999;(4)2,0,2,0. 

反思与感悟 由数列的前几项写出数列的一个通项公式,只需观察分析数列中项的构成规律,看哪些部分不随序号的变化而变化,哪些部分随序号的变化而变化,确定变化部分随序号变化的规律,继而将an表示为n的函数关系.

跟踪训练1 写出下面数列的一个通项公式,使它的前4项分别是下列各数:

(1)-,,-,;

(2),,,;

(3)7,77,777,7 777.