人教版(新) 五上数学第六单元:多边形的面积——三角形面积
人教版(新) 五上数学第六单元:多边形的面积——三角形面积第1页

多边形的面积-三角形的面积

教学内容:教材P92例2及练习二十第1、2题。

教学目标:

  知识与技能:掌握三角形的面积计算公式,并能正确计算三角形的面积。

  过程与方法:经历探索三角形的面积计算公式的过程,能用三角形的面积计算公式解决简单的实际问题。

  情感、态度与价值观:培养学生观察、比较、推理和概括能力。

教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。

教学难点:三角形的面积计算公式的推导过程和实际应用。

教学方法:动手实践、自主探索、合作交流

教学准备:多媒体。

教学过程

  一、复习导入

  1.出示长方形、正方形、平行四边形、三角形的图片。

  提问:我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么?

  学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;

       平行四边形的面积=底×高。

  2.师:今天我们就一起来研究"三角形的面积"。(板书课题:三角形的面积)

  3.学习新知识之前,我们共同回忆一下平行四边形的面积计算公式是怎样得出的?(演示推导过程)

  (我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)

  二、互动新授

  l.谈话:成为一名少先队员后,我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)

  追问:怎样求三角形的面积?引导学生利用平行四边形的面积公式的推导猜测,可以把三角形转化成我们已经学过的图形。

  2.请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。)

  师提出操作要求:用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答,而是通过动手操作得出结论。)

  3.分小组操作,并利用下表做好记录。

  我们是用两个( )三角形,拼成了一个( )。

  原三角形的底等于拼成的( )形的( );原三角形的高等于拼成的( )形的( );原三角形的面积等于拼成的( )形的( )。

  教师巡视指导。

  小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板上。

  学生可能选用两个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,

  每一个锐角三角形的面积是这个平行四边形面积的一半,所以得出一个三角形的面积=底×高÷2。

  也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个三角形的面积=底×高÷2。

还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。