1. 1.3双曲线及其标准方程
课前预习学案
一、预习目标
①双曲线及其焦点,焦距的定义。
②双曲线的标准方程及其求法。
③双曲线中a,b,c的关系。
④双曲线与椭圆定义及标准方程的异同。
二、预习内容
① 双曲线的定义。
② 利用定义推导双曲线的标准方程并与椭圆的定义、标准方程和推导过程进行李类比。
③ 掌握a,b,c之间的关系。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容 课内探究学案
一、教学过程
前面我们学习过椭圆,知道"平面内与两定点F1,F2的距离的和等于常数(大于F1F2 )的点的轨迹叫做椭圆"。
下面我们来考虑这样一个问题?
平面内与两定点F1,F2的距离差为常数的点的轨迹是什么?
我们在平面上固定两个点F1,F2,平面上任意一点为M,假设|F1F2|=100,|MF1|>|MF2|且|MF1|-|MF2|=50不断变化|MF1|和|MF2|的长度,我们可以得出它的轨迹为一条曲线。
若我们交换一下长度,|MF1|<|MF2|且|MF1|-|MF2|=-50时 ,可知它的轨迹也是一条曲线
那么由这个实验我们得出一个结论:
"平面内两个定点F1,F2的距离的差的绝对值为常数的点的轨迹是双曲线。"
但大家思考一下这个结论对不对呢?
我们知道在椭圆定义里,到两定点的距离和为一个常数,这个常数(必须大于|F1F2|) 那么这里差的绝对值为一个常数,这个常数和|F1F2|有什么关系呢?
下面我们来看一个试验,当|MF1|-|MF2|=0时,M点的轨迹为F1,F2的中垂线;
随着|MF1|-|MF2|的不断变化 ,呈现出一系列不同形状的双曲线;
当|F1F2|即和|F1F2|长度相等时,点的轨迹为以F1,F2 为端点的两条射线;
若|MF1|-|MF2|>100 时,就不存在点M。
那么由以上的一些试验我们可以得出双曲线的准确定义:
定义:平面内与两定点F1,F2的距离差的绝对值为非零常数(小于|F1F2|)的点的轨迹是双曲线。定点F1,F2叫做双曲线的焦点,两焦点的距离叫双曲线的焦距。