第3课时 概率的基本性质
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P119~P121,回答下列问题.
在掷骰子试验中,定义如下事件:
C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};D1={出现点数不大于1};D2={出现点数不大于3};D3={出现点数不大于5};E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数}.
(1)事件C1 与事件H间有什么关系?
提示:事件H包含事件C1.
(2)事件C1 与事件D1 间有什么关系?
提示:事件C1_与事件D1_相等.
(3)事件C1 与事件C2 的并事件是什么?
提示:事件C1∪C2_表示出现1点或2点,即C1∪C2={出现1点或2点}.
(4)事件D2 与G 及事件C2 间有什么关系?
提示:D2∩G=C2.
(5)事件C1 与事件C2 间有什么关系?
提示:这两个事件为互斥事件.
(6)事件E与事件F间有什么关系?
提示:这两个事件为对立事件.
2.归纳总结,核心必记
(1)事件的关系
①包含关系:一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B⊇A(或A⊆B).不可能事件记作∅,任何事件都包含不可能事件.
②相等关系:一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等,记作A=B.