2019-2020学年苏教版选修1-1 变化率问题导数的概念 学案
2019-2020学年苏教版选修1-1   变化率问题导数的概念   学案第1页



明目标、知重点

1.了解导数概念的实际背景.

2.会求函数在某一点附近的平均变化率.

3.会利用导数的定义求函数在某点处的导数.

1.函数的变化率

定义 实例 平均变化率 函数y=f(x)从x1到x2的平均变化率为,简记作: ①平均速度;②曲线割线的斜率 瞬时变化率 函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限,即 = ①瞬时速度:物体在某一时刻的速度;②切线斜率 2.函数f(x)在x=x0处的导数

函数y=f(x)在x=x0处的瞬时变化率称为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)= = .

情境导学]

某市2018年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温"陡增"14.8℃,闷热中的人们无不感叹:"天气热得太快了!"但是,如果我们将该市2018年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得"太快",而后者变化得"缓慢",那么在数学中怎样来刻画变量变化得快与慢呢?

探究点一 平均变化率的概念

思考1 气球膨胀率

很多人都吹过气球.回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?