2017-2018学年北师大版必修4 2.1.1位移、速度和力1.2向量的概念 教案
2017-2018学年北师大版必修4 2.1.1位移、速度和力1.2向量的概念 教案第1页

  教学设计

1.1 位移、速度和力

1.2 向量的概念

整体设计

教学分析

1.本节是本章的入门课,概念较多,但难度不大.位移、速度、力等物理量学生都学过,这里仅是列出这些物理量让学生感知矢量,为进一步学习向量的概念作铺垫.由于向量来源于物理,并且兼具"数"和"形"的特点,所以它在物理和几何中具有广泛的应用.可通过几个具体的例子说明它的应用.位移、速度、力等是物理中的基本量,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.

2.在类比数量的抽象过程而引出向量的概念后,为了使学生更好地理解向量概念,可采用与数量概念比较的方法,引导学生认识年龄、身高、长度、面积、体积、质量等量是"只有大小,没有方向的量",同时给出"时间、路程、功是向量吗?速度、加速度是向量吗?"的思考题.通过这样的比较,可以使学生在区分相似概念的过程中更深刻地把握向量概念.实数与数轴上的点是一一对应的,数量常常用数轴上的一个点表示.教科书通过类比实数在数轴上的表示,给出了向量的几何表示--用有向线段表示向量.用有向线段表示向量,赋予了向量一定的几何意义.有向线段使向量的"方向"得到了表示,那么向量的大小又该如何表示呢?一个自然的想法是用有向线段的长度来表示.从而引出向量的模、零向量及单位向量等概念,为学习向量作了很好的铺垫.

3.数学中,引进一个新的量后,首先要考虑的是如何规定它的"相等",这是讨论这个量的基础.如何规定"相等向量"呢?由于向量涉及大小和方向,因此把"长度相等且方向相同的向量"规定为相等向量是非常自然的.由向量相等的定义可以知道,对于一个向量,只要不改变它的方向和大小,就可以任意平行移动.因此,用有向线段表示向量时,可以任意选取有向线段的起点,这为用向量处理几何问题带来方便,并使平面上的向量与向量的坐标得以一一对应.教学时可结合例题、习题说明这种思想.

4.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.

三维目标

1.通过物理中的位移、速度、力等矢量,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.

2.理解自由向量、相等向量、相反向量、平行向量、零向量等概念,并能判断向量之间的关系.并会辨认图形中的相等向量或作出与某一已知向量相等的向量.

3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.并通过本节学习,培养学生从数学的角度思考生活中实际问题的习惯.加强数学的应用意识,切实做到学以致用.用联系、发展的观点观察世界.

重点难点

教学重点:理解并掌握向量、零向量、单位向量、向量的模、相等向量、共线向量的