1.绝对值三角不等式
对应学生用书P11
绝对值三角不等式
(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
几何解释:用向量a,b分别替换a,b.
①当a与b不共线时,有|a+b|<|a|+|b|,其几何意义为:三角形的两边之和大于第三边.
②若a,b共线,当a与b同向时,|a+b|=|a|+|b|,当a与b反向时,|a+b|<|a|+|b|.
由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式.
③定理1的推广:如果a,b是实数,则||a|-|b||≤|a±b|≤|a|+|b|.
(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.
当且仅当(a-b)(b-c)≥0时,等号成立.
几何解释:在数轴上,a,b,c所对应的点分别为A,B,C,
当点B在点A,C之间时,|a-c|=|a-b|+|b-c|.
当点B不在点A,C之间时:①点B在A或C上时,|a-c|=|a-b|+|b-c|;
②点B不在A,C上时,|a-c|<|a-b|+|b-c|.
应用:利用该定理可以确定绝对值函数的值域和最值.
对应学生用书P11
含绝对值不等式的判断与证明 [例1] 已知|A-a|<,|B-b|<,|C-c|<.
求证:|(A+B+C)-(a+b+c)| [思路点拨] 变形定理―→ [证明] |(A+B+C)-(a+b+c)|=|(A-a)+(B-b)+(C-c)|