圆的方程 教案
已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
[解] (1)设AP的中点为M(x0,y0),由中点坐标公式可知,P点坐标为(2x0-2,2y0).
因为P点在圆x2+y2=4上,
所以(2x0-2)2+(2y0)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x′,y′).
在Rt△PBQ中,|PN|=|BN|.
设O为坐标原点,连接ON,则ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x′2+y′2+(x′-1)2+(y′-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
求与圆有关的轨迹方程时,常用以下方法
(1)直接法:根据题设条件直接列出方程.
(2)定义法:根据圆的定义写出方程.
(3)几何法:利用圆的性质列方程.
(4)代入法:找出要求点与已知点的关系,代入已知点满足的关系式.
(2018·唐山一中调研)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4
D.(x+2)2+(y-1)2=1