2.1.2演绎推理
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程
一、 复习
二、 引入新课
1.假言推理
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫"大词",结论中的主词叫"小词",结论不出现的那个概念叫"中词",在两个前提中,包含大词的叫"大前提",包含小词的叫"小前提"。
3.关系推理 指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1) 对称性关系推理是根据关系的对称性进行的推理。
(2) 反对称性关系推理是根据关系的反对称性进行的推理。
(3) 传递性关系推理是根据关系的传递性进行的推理。
(4) 反传递性关系推理是根据关系的反传递性进行的推理。
4. 完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
完全归纳推理可用公式表示如下:
S1具有(或不具有)性质P
S2具有(或不具有)性质P......
Sn具有(或不具有)性质P
(S1 S2......Sn是 S类的所有个别对象)
所以,所有S都具有(或不具有)性质P