2019-2020学年北师大版选修1-1 1.3.3全称命题与特称命题的否定 学案
2019-2020学年北师大版选修1-1 1.3.3全称命题与特称命题的否定 学案第1页

 学习目标:1、了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断其命题的真假性.。

     2、会正确地对含有一个量词的命题进行否定.

重点难点:1、重点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定.

2、难点:正确地对含有一个量词的命题进行否定。 知识链接:

1.全称命题、存在性命题的否定

  一般地,全称命题P: xM,有P(x)成立;其否定命题┓P为:x∈M,使P(x)不成立。存在性命题P:xM,使P(x)成立;其否定命题┓P为: xM,有P(x)不成立。

用符号语言表示:

  P:M, p(x)否定为 P:

  P:M, p(x)否定为 P:

  

2.关键量词的否定

词语 是 一定是 都是 大于 小于 且 词语的否定 不是 一定不是 不都是 小于或等于 大于或等于 或 词语 必有一个 至少有n个 至多有一个 所有x成立 所有x不成立 词语的否定 一个也没有 至多有n-1个 至少有两个 存在一个x不成立 存在有一个成立 3. 命题的否定与否命题是完全不同的概念。其理由:

1.任何命题均有否定,无论是真命题还是假命题;而否命题仅针对命题"若P则q"提出来的。

2.命题的否定(非)是原命题的矛盾命题,两者的真假性必然是一真一假,一假一真;而否命题与原命题可能是同真同假,也可能是一真一假。

例2 写出下列命题的否定。

(1) 所有自然数的平方是正数。

(2) 任何实数x都是方程5x-12=0的根。

(3) 对任意实数x,存在实数y,使x+y>0.

(4) 有些质数是奇数。

例3 写出下列命题的否定。

(1) 若x2>4 则x>2.。

(2) 若m≥0,则x2+x-m=0有实数根。

(3) 可以被5整除的整数,末位是0。

(4) 被8整除的数能被4整除。

(5) 若一个四边形是正方形,则它的四条边相等。