2019-2020学年人教A版选修2-1 全称量词存在量词 学案
2019-2020学年人教A版选修2-1           全称量词存在量词 学案第1页



 全称量词 存在量词

学习目标 1.理解全称量词与存在量词的含义.2.理解并掌握全称命题和特称命题的概念.3.能判定全称命题和特称命题的真假并掌握其判断方法.

知识点一 全称量词、全称命题

思考 观察下面的两个语句,思考下列问题:

P:m≤5;

Q:对所有的m∈R,m≤5.

(1) 上面的两个语句是命题吗?二者之间有什么关系?

(2)常见的全称量词有哪些?(至少写出五个).

答案 (1)语句P无法判断真假,不是命题;语句Q在语句P的基础上增加了"所有的",可以判断真假,是命题.语句P是命题Q中的一部分.

(2)常见的全称量词有:"任意一个""一切""每一个""任给""所有的""凡是"等.

梳理 (1)概念

短语"所有的""任意一个"在逻辑中通常叫做全称量词,并用符号"∀"表示.含有全称量词的命题,叫做全称命题.

(2)表示

将含有变量x的语句用p(x),q(x),r(x),...表示,变量x的取值范围用M表示.那么,全称命题"对M中任意一个x,有p(x)成立"可用符号简记为:∀x∈M,p(x),读作"对任意x属于M,有p(x)成立".

(3)全称命题的真假判定

要判定全称命题是真命题,需要对集合M中每个元素x,

证明p(x)成立,但要判定全称命题是假命题,只需举出一个x0∈M,使得p(x0)不成立即可.

知识点二 存在量词、特称命题

思考 观察下面的两个语句,思考下列问题:

P:m>5;

Q:存在一个m0∈Z,m0>5.

(1)上面的两个语句是命题吗?二者之间有什么关系?

(2)常见的存在量词有哪些?(至少写出五个)