2018-2019学年北师大版选修2-1 第二章 §4 曲线与方程 学案(1)
2018-2019学年北师大版选修2-1  第二章 §4 曲线与方程  学案(1)第1页

§4 曲线与方程

4.1 曲线与方程

学习目标 1.了解曲线上的点与方程的解之间的一一对应关系.2.理解方程的曲线和曲线的方程的概念.3.了解用坐标法研究几何问题的常用思路与方法.4.掌握根据已知条件求曲线方程的方法.

知识点一 曲线的方程和方程的曲线的概念

在直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:

(1)曲线上点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都在曲线上,

那么,这个方程叫作曲线的方程;这条曲线叫作方程的曲线.

知识点二 坐标法思想及求曲线方程的步骤

思考 曲线C上的点的坐标都是方程f(x,y)=0的解,能否说f(x,y)=0是曲线C的方程?试举例说明.

答案 不能.还要验证以方程f(x,y)=0的解为坐标的点是否都在曲线上.例如曲线C为"以原点为圆心,以2为半径的圆的上半部分"与方程"x2+y2=4",曲线上的点都满足方程,但曲线的方程不是x2+y2=4.

梳理 (1)曲线的方程和方程的曲线是两个不同的概念,是从不同角度出发的两种说法.曲线C的点集和方程f(x,y)=0的解集之间是一一对应的关系,曲线的性质可以反映在它的方程上,方程的性质又可以反映在曲线上.定义中的条件①说明曲线上的所有点都适合这个方程;条件②说明适合方程的点都在曲线上而毫无遗漏.

(2)曲线的方程和方程的曲线有着紧密的关系,通过曲线上的点与实数对(x,y)建立了一一对应关系,使方程成为曲线的代数表示,通过研究方程的性质可间接地研究曲线的性质.

(3)求曲线的方程的步骤