考点 空间向量及其应用
1.(2018江苏,22,10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
解析 在平面ABCD内,过点A作AE⊥AD,交BC于点E.
因为AA1⊥平面ABCD,
所以AA1⊥AE,AA1⊥AD.
如图,以{,,}为正交基底建立空间直角坐标系A-xyz.
因为AB=AD=2,AA1=,∠BAD=120°,
则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).
(1)=(,-1,-),=(,1,),
则cos<,>=
=-,
因此异面直线A1B与AC1所成角的余弦值为.
(2)平面A1DA的一个法向量为=(,0,0).
设m=(x,y,z)为平面BA1D的法向量,
又=(,-1,-),=(-,3,0),
则
即
不妨取x=3,则y=,z=2,
所以m=(3,,2)为平面BA1D的一个法向量,
从而cos<,m>===.
设二面角B-A1D-A的大小为θ,则|cos θ|=.
因为θ∈[0,π],所以sin θ==.
因此二面角B-A1D-A的正弦值为.
2.(2018北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
解析 (1)设AC,BD交点为E,连接ME.