2019-2020学年北师大版选修2-13.1 双曲线及其标准方程 学案
2019-2020学年北师大版选修2-13.1 双曲线及其标准方程  学案第1页



3.1 双曲线及其标准方程

学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题.

知识点一 双曲线的定义

思考 如图,若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?

梳理 (1)平面内到两定点F1,F2的距离之差的______等于常数(大于零且小于|F1F2|)的点的轨迹叫作双曲线.__________叫作双曲线的焦点,两焦点之间的距离叫作双曲线的______.

(2)关于"小于|F1F2|":①若将"小于|F1F2|"改为"等于|F1F2|",其余条件不变,则动点轨迹是以F1,F2为端点的______(包括端点);②若将"小于|F1F2|"改为"大于|F1F2|",其余条件不变,则动点轨迹不存在.

(3)若将"绝对值"去掉,其余条件不变,则动点的轨迹只有双曲线的______.