2018-2019学年人教B版选修2-2 1.1.2 瞬时速度与导数 学案
2018-2019学年人教B版选修2-2 1.1.2 瞬时速度与导数 学案第1页

1.1.2 瞬时速度与导数

明目标、知重点 1.理解瞬时速度及瞬时变化率的定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率.3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法.4.理解并掌握开区间内的导数的概念,会求一个函数的导数.

1.瞬时速度

我们把物体在某一时刻的速度称为瞬时速度.设物体运动路程与时间的关系是s=s(t),物体在t0时刻的瞬时速度v就是运动物体在t0到t0+Δt这段时间内的平均变化率,当Δt→0时的极限,即v= = .

2.瞬时变化率

一般地,函数y=f(x)在x0处的瞬时变化率是 = .

3.导数的概念

一般地,函数y=f(x)在x0处的瞬时变化率是 ,我们称它为函数y=f(x)在x=x0处的导数,记为f′(x0),即f′(x0)= = .

4.导函数

如果f(x)在开区间(a,b)内每一点x都是可导的,则称

f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值x,都对应一个确定的导数f′(x),于是在区间(a,b)内,f′(x)构成一个新的函数,把这个函数称为函数y=f(x)的导函数.记为f′(x)或y′(或y′x).导函数通常简称为导数.

探究点一 瞬时速度

思考1 在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.在某些时间段内如何粗略地描述其运动状态?平均速度能否精确反映它的运动状态?

答 用0≤t≤0.5和1≤t≤2的平均速度来粗略地描述其运动状态.