2019-2020学年北师大版选修2-2 反证法 学案
题型一 用反证法证明结论否定的问题
例1 如图所示,AB,CD为圆的两条相交弦,且不全为直径,求证:AB,CD不能互相平分.
证明 连接AC,CB,BD,DA,假设AB,CD互相平分,则四边形ACBD为平行四边形,∴∠ACB=∠ADB,∠CAD=∠CBD.
∵四边形ACBD为圆的内接四边形,
∴∠ACB+∠ADB=180°,∠CAD+∠CBD=180°,
∴∠ACB=90°,∠CAD=90°,
∴对角线AB,CD均为圆的直径,与已知条件矛盾,
∴AB,CD不能互相平分.
反思与感悟 对于结论否定型命题,正面证明需要考虑的情况很多,过程烦琐且容易遗漏,故可以考虑采用反证法.一般当题目中含有"不可能""都不""没有"等否定性词语时,宜采用反证法证明.
跟踪训练1 已知正整数a,b,c满足a2+b2=c2.求证a,b,c不可能都是奇数.
证明 假设a,b,c都是奇数,则a2,b2,c2都是奇数.
左边=奇数+奇数=偶数,右边=奇数,得偶数=奇数,矛盾.
∴假设不成立,∴a,b,c不可能都是奇数.
题型二 用反证法证明唯一性问题
例2 用反证法证明:过已知直线a外一点A只有一条直线b与已知直线a平行.
证明 假设过点A还有一条直线b′与已知直线a平行,即b∩b′=A,b′∥a,又b∥a,由平行公理知b′∥b.