2018-2019学年人教A版 柱体、锥体、台体、球教学设计 教案(3)
2018-2019学年人教A版 柱体、锥体、台体、球教学设计 教案(3)第1页

《柱体、锥体、台体的表面积》教学设计

一、 教材的理解与处理

  空间几何体的表面积问题是生产、生活中的实际问题,研究这类问题有助于培养学生的数学应用意识;立体几何中的核心思想"立体问题平面化"的思想在本节也得到体现,把空间几何体展开成平面图形。棱柱、棱锥可以看成棱台的两种特殊情况,我们还可以体会圆柱、圆锥、圆台与棱柱、棱锥、棱台侧面积公式之间的一致性,体现了数学的统一美。

1、 教学目标确定说明

  学生在初中虽然已经接触过平面几何体的概念,但学生尚缺乏空间想象能力,还缺乏知识的迁移与类比能力,这些都需要教师在课堂教学过程中有意识地、创造性地培养学生逐步形成.

数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯。根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:

1.知识与技能:使学生通过柱体、锥体、台体的表面积的探索,学会将空间问题转化为平面问题进行解决的数学思想方法.

2.过程与方法:使学生在表面积公式的推导过程中充分感受数学的转化思想、类比思想,提高学生分析问题与解决问题的能力.

3.情感态度与价值观:通过和谐对称规范的图形,给予学生以数学美的享受;同时发展学生求知、求实、勇于探索的情感与态度.

三、教学重点、难点确定说明

本节课如果只把几组公式告诉学生,并让他们进行一些训练就能达到要求。这样做就失去渗透相关重要数学思想的机会,就失去让学生体会数学美的机会。数学教学中应强调对基本概念和基本思想方法的理解和掌握,并能灵活应用所学知识解决实际问题,根据本节课的教学内容和学生认知结构特征,重点确定为:理解和掌握柱体、锥体、台体的表面积的构成形式,以便从度量的角度认识空间几何体.难点为:用联系、类比、运动变化的思想推导柱体、锥体、台体的表面积