2.1..1 合情推理
考点一:归纳推理在数列中的应用
1.根据下列条件,写出数列中的前4项,并归纳猜想它的通项公式.
(1)a1=3,an+1=2an+1;
(2)a1=a,an+1=;
(3)对一切的n∈N*,an>0,且2=an+1.
[解析] (1)由已知有a1=3=22-1,
a4=2a3+1=2×15+1=31=25-1.
猜测出an=2n+1-1,n∈N* (n≥2).
(2)由已知有a1=a,
a4==.
猜测出an=.(n≥2)
2.下面各列数都依照一定规律排列,在括号里填上适当的数:
(1)1、5、9、13、17、( );
(2)、1、1、2、3、( );
(3)、、、、、( );
(4)32、31、16、26、( )、( )、4、16、2、11.
[答案] (1)21 (2)5 (3) (4)8 21
[解析] 要在括号里填上适当的数,必须正确地判断出每列数所具有的规律,为此必须进行仔细的观察和揣摩.
(1)考察相邻两数的差:
5-1=4,9-5=4,
13-9=4,17-13=4
可见,相邻两数之差都是4.按此规律,括号里的数减去17等于4,所以括号里的数是17+