2018-2019学年北师大版必修五 2.1 等差数列(一) 学案
2018-2019学年北师大版必修五   2.1 等差数列(一)         学案第1页



2.1 等差数列(一)

学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念,深化认识并能运用.

知识点一 等差数列的概念

思考 给出以下三个数列:

(1)0,5,10,15,20;

(2)4,4,4,4;

(3)18,15.5,13,10.5,8,5.5.

它们有什么共同的特征? 

梳理 从第____项起,每一项与前一项的差等于同一个________,这个数列称为等差数列,这个常数为等差数列的________,公差通常用字母d表示.

知识点二 等差中项的概念

思考 观察下列所给的两个数之间插入一个什么数后,三个数能成为一个等差数列:

(1)2,4;(2)-1,5;(3)a,b;(4)0,0.

梳理 如果三个数a,A,b组成等差数列,那么A叫作a和b的等差中项,且A=.

知识点三 等差数列的通项公式

思考 对于等差数列2,4,6,8,...,有a2-a1=2,即a2=a1+2;a3-a2=2,即a3=a2+2=a1+2×2;a4-a3=2,即a4=a3+2=a1+3×2.

试猜想an=a1+(  )×2.

梳理 若一个等差数列{an},首项是a1,公差为d,则an=a1+(n-1)d.此公式可用累加法证明.