课题:§1.1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集"是什么","为什么","怎样做";
教学过程:
一、 引入课题
二、 新课教学
1. 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:"A并B"
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P9-10例4、例5)w w w .x k b 1.c o m
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2. 交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:"A交B"
即: A∩B={x|∈A,且x∈B}