曲线与方程 教案
知识点 曲线与方程
1.曲线与方程
一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:
(1)曲线上点的坐标都是这个方程的解.
(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线.
2.求动点轨迹方程的一般步骤
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标.
(2)写出适合条件p的点M的集合P={M|p(M)}.
(3)用坐标表示条件p(M),列出方程f(x,y)=0.
(4)化方程f(x,y)=0为最简形式.
(5)说明以化简后的方程的解为坐标的点都在曲线上.
3.曲线的交点
设曲线C1的方程为F1(x,y)=0,曲线C2的方程为F2(x,y)=0,则C1,C2的交点坐标即为方程组的实数解.
若此方程组无解,则两曲线无交点.
易误提醒 (1)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).
(2)求轨迹方程时易忽视轨迹上特殊点对轨迹的"完备性与纯粹性"的影响.
[自测练习]
1.方程(a-1)x-y+2a+1=0(a∈R)所表示的直线( )
A.恒过定点(-2,3)
B.恒过定点(2,3)
C.恒过点(-2,3)和点(2,3)
D.都是平行直线
解析:把点(-2,3)和点(2,3)的坐标代入方程(a-1)x-y+2a+1=0.验证知(-2,3)适合方程,而(2,3)不一定适合方程,故选A.
答案:A