2017-2018学年人教A版选修1-1 双曲线及其标准方程 学案
2017-2018学年人教A版选修1-1   双曲线及其标准方程   学案第1页

2.3.1 双曲线及其标准方程

  

双曲线的定义   [提出问题]

  问题1:平面内,动点P到两定点F1(-5,0),F2(5,0)的距离之和为12,动点P的轨迹是什么?

  提示:椭圆.

  问题2:平面内,动点P到两定点F1(-5,0),F2(5,0)的距离之差的绝对值为6,动点P的轨迹还是椭圆吗?是什么?

  提示:不是,是双曲线.

  [导入新知]

  双曲线的定义

  把平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.

  [化解疑难]

  平面内到两定点F1,F2的距离的差的绝对值为常数,即||MF1|-|MF2||=2a,关键词"平面内".

  当2a<|F1F2|时,轨迹是双曲线;

  当2a=|F1F2|时,轨迹是分别以F1,F2为端点的两条射线;

  当2a>|F1F2|时,轨迹不存在.

双曲线的标准方程   [提出问题]

  问题1:"知识点一"的问题2中,动点P的轨迹方程是什么?

  提示:-=1.

  问题2:平面内,动点P到两定点F1(0,5),F2(0,-5)的距离之差的绝对值为定值6,动点P的轨迹方程是什么?

  提示:-=1.

  [导入新知]

  双曲线的标准方程

焦点在x轴上 焦点在y轴上