2017-2018人教A版选修2-12.2.2.2 双曲线的简单几何性质
2017-2018人教A版选修2-12.2.2.2 双曲线的简单几何性质第1页

 2.2.2 双曲线的简单几何性质

◆ 知识与技能目标

  了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.

◆ 过程与方法目标

(1)复习与引入过程

引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.

(2)新课讲授过程

(i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.

 提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?

通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.

(ii)双曲线的简单几何性质

①范围:由双曲线的标准方程得,,进一步得:,或.这说明双曲线在不等式,或所表示的区域;

②对称性:由以代,以代和代,且以代这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以轴和轴为对称轴,原点为对称中心;

③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;

④渐近线:直线叫做双曲线的渐近线;

⑤离心率: 双曲线的焦距与实轴长的比叫做双曲线的离心率().

(iii)例题讲解与引申、扩展

例3 求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.

分析:由双曲线的方程化为标准方程,容易求出.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的