第五课时 导数的几何意义(一)
一、教学目标:
1、通过函数的图像直观地理解导数的几何意义;
2、理解曲线在一点的切线的概念;
3、会求简单函数在某点处的切线方程。
二、教学重点:了解导数的几何意义
教学难点:求简单函数在某点出的切线方程
三、教学方法:探析归纳,讲练结合
四、教学过程
(一)、复习:导数的概念及求法。
(二)、探究新课
设函数在[x0,x0+Δx]的平均变化率为,如右图所示,它是过A(x0,)和B(x0+Δx,)两点的直线的斜率。这条直线称为曲线在点A处的一条割线。
如右图所示,设函数的图像是一条光滑的曲线,从图像上可以看出:当Δx取不同的值时,可以得到不同的割线;当Δx趋于0时,点B将沿着曲线趋于点A,割线AB将绕点A转动最后趋于直线l。直线l和曲线在点A处"相切" ,称直线l为曲线在点A处的切线。该切线的斜率就是函数在x0处的导数。
函数在x0处的导数,是曲线在点(x0,)处的切线的斜率。函数在x0处切线的斜率反映了导数的几何意义。
1、导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤: