2019-2020学年人教版选修3-5 动量守恒定律的应用 学案
2019-2020学年人教版选修3-5   动量守恒定律的应用   学案第1页

微型专题 动量守恒定律的应用

[学科素养与目标要求] 

物理观念:1.进一步理解动量守恒定律的含义及守恒条件.2.理解动量守恒定律的普遍性.

科学思维:熟练掌握应用动量守恒定律解决实际问题.

一、动量守恒条件的理解

1.动量守恒定律成立的条件:

(1)系统不受外力或所受外力的合力为零;

(2)系统的内力远大于外力;

(3)系统在某一方向上不受外力或所受外力的合力为0.

此种情况说明:动量守恒定律的适用条件是普遍的,当系统所受的合外力不为零时,系统的总动量不守恒,但是合外力在某个方向上的分量为零时,那么在该方向上系统的动量分量是守恒的.

2.动量守恒定律的研究对象是系统.研究多个物体组成的系统时,必须合理选择系统,分清系统的内力与外力,然后判断所选系统是否符合动量守恒的条件.

例1 (多选)质量分别为M和m0的两滑块用轻弹簧连接,以恒定速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图1所示,碰撞时间极短,在此过程中,下列情况可能发生的是(  )

图1

A.M、m0、m速度均发生变化,碰后分别为v1、v2、v3,且满足(M+m0)v=Mv1+m0v2+mv3

B.m0的速度不变,M和m的速度变为v1和v2,且满足Mv=Mv1+mv2

C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′

D.M、m0、m速度均发生变化,M和m0的速度都变为v1,m的速度变为v2,且满足(M+m0)v=(M+m0)v1+mv2

答案 BC

解析 M和m碰撞时间极短,在极短的时间内弹簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确.