课 题: 第15课时 利用平均不等式求最大(小)值
目的要求:
重点难点:
教学过程:
一、引入:
1、重要的结论:
已知x,y都是正数,则:
(1)、如果积xy是定值P,那么当x=y时,和x+y有最小值;
(2)、如果和x+y是定值S,那么当x=y时,积xy有最大值。
二、典型例题:
例1、当取什么值时,函数有最小值?最小值是多少?
例2、求函数()的最小值。
例3、小宁在某电脑城配置了一台总费用为6400元的电脑。假定在电脑的使用过程中,每年的维修费用约为:第一年为200元,第二年400元,第三年600元,...,按等差数列递增。这台电脑使用多少年报废最合算?
分析:
例4、如图,电灯挂在圆桌的正中央上方。假定它与桌面上A点的水平距离是,那么电灯距离桌面的高度等于多少时,A点处最亮?(亮度公式:,这里为常数,是电灯到照射点的距离,是照射到某点的光线与水平面所成的角)
分析:
例5、求函数的最大值,下列解法是否正确?为什么?