1.4绝对值的三角不等式
[读教材·填要点]
绝对值的三角不等式
(1)定理1:若a,b为实数,则|a+b|≤|a|+|b|.
当且仅当ab≥0时,等号成立.
(2)定理2:设a,b,c为实数,则|a-c|≤|a-b|+|b-c|,等号成立⇔(a-b)(b-c)≥0,即b落在a,c之间.
①推论1:||a|-|b||≤|a+b|
②推论2:||a|-|b||≤|a-b|
[小问题·大思维]
1.|a+b|与|a|-|b|,|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?
提示:|a|-|b|≤|a+b|,|a|-|b|≤|a-b|≤|a|+|b|.
2.不等式|a|-|b|≤|a±b|≤|a|+|b|中"="成立的条件分别是什么?
提示:不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧"="成立的条件是ab≥0,左侧"="成立的条件是ab≤0,且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧"="成立的条件是ab≤0,左侧"="成立的条件是ab≥0且|a|≥|b|.
3.绝对值不等式|a-c|≤|a-b|+|b-c|的几何解释是什么?
提示:在数轴上,a,b,c所对应的点分别为A,B,C,当点B在点A,C之间时,|AC|=|AB|+|BC|;当点B不在点A,C之间时,|AC|<|AB|+|BC|.
绝对值的三角不等式的应用
[例1] (1)以下四个命题:
①若a,b∈R,则|a+b|-2|a|≤|a-b|;
②若|a-b|<1,则|a|<|b|+1;
③若|x|<2,|y|>3,则||<;