空间向量及其运算
●考试目标 主词填空
1.空间向量基本定理及应用
空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p存在惟一的有序实数组x、y、z,使p=x a+ y b+ z c.
2.向量的直角坐标运算:
设a=(a1,a2,a3), b=(b1,b2,b3),
A(x1,y1,z1),B(x2,y2,z2).
则a+b= .
a-b= .
a·b=.
若a、b为两非零向量,则a⊥ba·b=0 =0.
●题型示例 点津归纳
【例1】 已知空间四边形OABC中,∠AOB=∠BOC=
∠AOC,且OA=OB=OC.M,N分别是OA,BC的中点,G是
MN的中点.
求证:OG⊥BC.
【解前点津】 要证OG⊥BC,只须证明即可.
而要证,必须把、用一组已知的空间基向量来表示.又已知条件为∠AOB=∠BOC=∠AOC,且OA=OB=OC,因此可选为已知的基向量.
【规范解答】 连ON由线段中点公式得:
又,
所以)
=().
因为.