3.1.2 复数的几何意义
教学目标
1知识目标:理解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数式加法、减法运算的几何意义。
2能力目标:渗透转化、数形结合等数学思想和方法,提高分析、解决问题的能力。
3情感目标:引导学生观察现象,发现问题,提出观点,验证结论,培养良好的学习思维品质。
教学重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。
教学难点: 根据复数的代数形式描出其对应的点及向量。
教学过程:
一、复习准备:
1. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。
2.复数,当取何值时为实数、虚数、纯虚数?
3. 若,试求的值,(呢?)
二、讲授新课:
1. 复数的几何意义:
① 讨论:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?
(分析复数的代数形式,因为它是由实部和虚部同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标) 结论:复数与平面内的点或序实数一一对应。
②复平面:以轴为实轴, 轴为虚轴建立直角坐标系,得到的平面叫复平面。
复数与复平面内的点一一对应。
③例1:在复平面内描出复数分别对应的点。
(先建立直角坐标系,标注点时注意纵坐标是而不是)
观察例1中我们所描出的点,从中我们可以得出什么结论?
④实数都落在实轴上,纯虚数落在虚轴上,除原点外,虚轴表示纯虚数。
思考:我们所学过的知识当中,与平面内的点一一对应的东西还有哪些?
⑤,,
注意:人们常将复数说成点或向量,规定相等的向量表示同一复数。