1.1.1集合的概念
教学目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解"属于"关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念
教学过程:
1.引入
(1)章头导言
(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、......元素通常用小写的拉丁字母表示,如a、b、c、......
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意"∈"的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分,,,0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N